You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
747 lines
22 KiB
747 lines
22 KiB
/* |
|
Copyright 2014 The Kubernetes Authors. |
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); |
|
you may not use this file except in compliance with the License. |
|
You may obtain a copy of the License at |
|
|
|
http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
Unless required by applicable law or agreed to in writing, software |
|
distributed under the License is distributed on an "AS IS" BASIS, |
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
See the License for the specific language governing permissions and |
|
limitations under the License. |
|
*/ |
|
|
|
package resource |
|
|
|
import ( |
|
"bytes" |
|
"errors" |
|
"fmt" |
|
"math/big" |
|
"regexp" |
|
"strconv" |
|
"strings" |
|
|
|
inf "gopkg.in/inf.v0" |
|
) |
|
|
|
// Quantity is a fixed-point representation of a number. |
|
// It provides convenient marshaling/unmarshaling in JSON and YAML, |
|
// in addition to String() and Int64() accessors. |
|
// |
|
// The serialization format is: |
|
// |
|
// <quantity> ::= <signedNumber><suffix> |
|
// (Note that <suffix> may be empty, from the "" case in <decimalSI>.) |
|
// <digit> ::= 0 | 1 | ... | 9 |
|
// <digits> ::= <digit> | <digit><digits> |
|
// <number> ::= <digits> | <digits>.<digits> | <digits>. | .<digits> |
|
// <sign> ::= "+" | "-" |
|
// <signedNumber> ::= <number> | <sign><number> |
|
// <suffix> ::= <binarySI> | <decimalExponent> | <decimalSI> |
|
// <binarySI> ::= Ki | Mi | Gi | Ti | Pi | Ei |
|
// (International System of units; See: http://physics.nist.gov/cuu/Units/binary.html) |
|
// <decimalSI> ::= m | "" | k | M | G | T | P | E |
|
// (Note that 1024 = 1Ki but 1000 = 1k; I didn't choose the capitalization.) |
|
// <decimalExponent> ::= "e" <signedNumber> | "E" <signedNumber> |
|
// |
|
// No matter which of the three exponent forms is used, no quantity may represent |
|
// a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal |
|
// places. Numbers larger or more precise will be capped or rounded up. |
|
// (E.g.: 0.1m will rounded up to 1m.) |
|
// This may be extended in the future if we require larger or smaller quantities. |
|
// |
|
// When a Quantity is parsed from a string, it will remember the type of suffix |
|
// it had, and will use the same type again when it is serialized. |
|
// |
|
// Before serializing, Quantity will be put in "canonical form". |
|
// This means that Exponent/suffix will be adjusted up or down (with a |
|
// corresponding increase or decrease in Mantissa) such that: |
|
// a. No precision is lost |
|
// b. No fractional digits will be emitted |
|
// c. The exponent (or suffix) is as large as possible. |
|
// The sign will be omitted unless the number is negative. |
|
// |
|
// Examples: |
|
// 1.5 will be serialized as "1500m" |
|
// 1.5Gi will be serialized as "1536Mi" |
|
// |
|
// NOTE: We reserve the right to amend this canonical format, perhaps to |
|
// allow 1.5 to be canonical. |
|
// TODO: Remove above disclaimer after all bikeshedding about format is over, |
|
// or after March 2015. |
|
// |
|
// Note that the quantity will NEVER be internally represented by a |
|
// floating point number. That is the whole point of this exercise. |
|
// |
|
// Non-canonical values will still parse as long as they are well formed, |
|
// but will be re-emitted in their canonical form. (So always use canonical |
|
// form, or don't diff.) |
|
// |
|
// This format is intended to make it difficult to use these numbers without |
|
// writing some sort of special handling code in the hopes that that will |
|
// cause implementors to also use a fixed point implementation. |
|
// |
|
// +protobuf=true |
|
// +protobuf.embed=string |
|
// +protobuf.options.marshal=false |
|
// +protobuf.options.(gogoproto.goproto_stringer)=false |
|
// +k8s:deepcopy-gen=true |
|
// +k8s:openapi-gen=true |
|
type Quantity struct { |
|
// i is the quantity in int64 scaled form, if d.Dec == nil |
|
i int64Amount |
|
// d is the quantity in inf.Dec form if d.Dec != nil |
|
d infDecAmount |
|
// s is the generated value of this quantity to avoid recalculation |
|
s string |
|
|
|
// Change Format at will. See the comment for Canonicalize for |
|
// more details. |
|
Format |
|
} |
|
|
|
// CanonicalValue allows a quantity amount to be converted to a string. |
|
type CanonicalValue interface { |
|
// AsCanonicalBytes returns a byte array representing the string representation |
|
// of the value mantissa and an int32 representing its exponent in base-10. Callers may |
|
// pass a byte slice to the method to avoid allocations. |
|
AsCanonicalBytes(out []byte) ([]byte, int32) |
|
// AsCanonicalBase1024Bytes returns a byte array representing the string representation |
|
// of the value mantissa and an int32 representing its exponent in base-1024. Callers |
|
// may pass a byte slice to the method to avoid allocations. |
|
AsCanonicalBase1024Bytes(out []byte) ([]byte, int32) |
|
} |
|
|
|
// Format lists the three possible formattings of a quantity. |
|
type Format string |
|
|
|
const ( |
|
DecimalExponent = Format("DecimalExponent") // e.g., 12e6 |
|
BinarySI = Format("BinarySI") // e.g., 12Mi (12 * 2^20) |
|
DecimalSI = Format("DecimalSI") // e.g., 12M (12 * 10^6) |
|
) |
|
|
|
// MustParse turns the given string into a quantity or panics; for tests |
|
// or others cases where you know the string is valid. |
|
func MustParse(str string) Quantity { |
|
q, err := ParseQuantity(str) |
|
if err != nil { |
|
panic(fmt.Errorf("cannot parse '%v': %v", str, err)) |
|
} |
|
return q |
|
} |
|
|
|
const ( |
|
// splitREString is used to separate a number from its suffix; as such, |
|
// this is overly permissive, but that's OK-- it will be checked later. |
|
splitREString = "^([+-]?[0-9.]+)([eEinumkKMGTP]*[-+]?[0-9]*)$" |
|
) |
|
|
|
var ( |
|
// splitRE is used to get the various parts of a number. |
|
splitRE = regexp.MustCompile(splitREString) |
|
|
|
// Errors that could happen while parsing a string. |
|
ErrFormatWrong = errors.New("quantities must match the regular expression '" + splitREString + "'") |
|
ErrNumeric = errors.New("unable to parse numeric part of quantity") |
|
ErrSuffix = errors.New("unable to parse quantity's suffix") |
|
) |
|
|
|
// parseQuantityString is a fast scanner for quantity values. |
|
func parseQuantityString(str string) (positive bool, value, num, denom, suffix string, err error) { |
|
positive = true |
|
pos := 0 |
|
end := len(str) |
|
|
|
// handle leading sign |
|
if pos < end { |
|
switch str[0] { |
|
case '-': |
|
positive = false |
|
pos++ |
|
case '+': |
|
pos++ |
|
} |
|
} |
|
|
|
// strip leading zeros |
|
Zeroes: |
|
for i := pos; ; i++ { |
|
if i >= end { |
|
num = "0" |
|
value = num |
|
return |
|
} |
|
switch str[i] { |
|
case '0': |
|
pos++ |
|
default: |
|
break Zeroes |
|
} |
|
} |
|
|
|
// extract the numerator |
|
Num: |
|
for i := pos; ; i++ { |
|
if i >= end { |
|
num = str[pos:end] |
|
value = str[0:end] |
|
return |
|
} |
|
switch str[i] { |
|
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9': |
|
default: |
|
num = str[pos:i] |
|
pos = i |
|
break Num |
|
} |
|
} |
|
|
|
// if we stripped all numerator positions, always return 0 |
|
if len(num) == 0 { |
|
num = "0" |
|
} |
|
|
|
// handle a denominator |
|
if pos < end && str[pos] == '.' { |
|
pos++ |
|
Denom: |
|
for i := pos; ; i++ { |
|
if i >= end { |
|
denom = str[pos:end] |
|
value = str[0:end] |
|
return |
|
} |
|
switch str[i] { |
|
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9': |
|
default: |
|
denom = str[pos:i] |
|
pos = i |
|
break Denom |
|
} |
|
} |
|
// TODO: we currently allow 1.G, but we may not want to in the future. |
|
// if len(denom) == 0 { |
|
// err = ErrFormatWrong |
|
// return |
|
// } |
|
} |
|
value = str[0:pos] |
|
|
|
// grab the elements of the suffix |
|
suffixStart := pos |
|
for i := pos; ; i++ { |
|
if i >= end { |
|
suffix = str[suffixStart:end] |
|
return |
|
} |
|
if !strings.ContainsAny(str[i:i+1], "eEinumkKMGTP") { |
|
pos = i |
|
break |
|
} |
|
} |
|
if pos < end { |
|
switch str[pos] { |
|
case '-', '+': |
|
pos++ |
|
} |
|
} |
|
Suffix: |
|
for i := pos; ; i++ { |
|
if i >= end { |
|
suffix = str[suffixStart:end] |
|
return |
|
} |
|
switch str[i] { |
|
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9': |
|
default: |
|
break Suffix |
|
} |
|
} |
|
// we encountered a non decimal in the Suffix loop, but the last character |
|
// was not a valid exponent |
|
err = ErrFormatWrong |
|
return |
|
} |
|
|
|
// ParseQuantity turns str into a Quantity, or returns an error. |
|
func ParseQuantity(str string) (Quantity, error) { |
|
if len(str) == 0 { |
|
return Quantity{}, ErrFormatWrong |
|
} |
|
if str == "0" { |
|
return Quantity{Format: DecimalSI, s: str}, nil |
|
} |
|
|
|
positive, value, num, denom, suf, err := parseQuantityString(str) |
|
if err != nil { |
|
return Quantity{}, err |
|
} |
|
|
|
base, exponent, format, ok := quantitySuffixer.interpret(suffix(suf)) |
|
if !ok { |
|
return Quantity{}, ErrSuffix |
|
} |
|
|
|
precision := int32(0) |
|
scale := int32(0) |
|
mantissa := int64(1) |
|
switch format { |
|
case DecimalExponent, DecimalSI: |
|
scale = exponent |
|
precision = maxInt64Factors - int32(len(num)+len(denom)) |
|
case BinarySI: |
|
scale = 0 |
|
switch { |
|
case exponent >= 0 && len(denom) == 0: |
|
// only handle positive binary numbers with the fast path |
|
mantissa = int64(int64(mantissa) << uint64(exponent)) |
|
// 1Mi (2^20) has ~6 digits of decimal precision, so exponent*3/10 -1 is roughly the precision |
|
precision = 15 - int32(len(num)) - int32(float32(exponent)*3/10) - 1 |
|
default: |
|
precision = -1 |
|
} |
|
} |
|
|
|
if precision >= 0 { |
|
// if we have a denominator, shift the entire value to the left by the number of places in the |
|
// denominator |
|
scale -= int32(len(denom)) |
|
if scale >= int32(Nano) { |
|
shifted := num + denom |
|
|
|
var value int64 |
|
value, err := strconv.ParseInt(shifted, 10, 64) |
|
if err != nil { |
|
return Quantity{}, ErrNumeric |
|
} |
|
if result, ok := int64Multiply(value, int64(mantissa)); ok { |
|
if !positive { |
|
result = -result |
|
} |
|
// if the number is in canonical form, reuse the string |
|
switch format { |
|
case BinarySI: |
|
if exponent%10 == 0 && (value&0x07 != 0) { |
|
return Quantity{i: int64Amount{value: result, scale: Scale(scale)}, Format: format, s: str}, nil |
|
} |
|
default: |
|
if scale%3 == 0 && !strings.HasSuffix(shifted, "000") && shifted[0] != '0' { |
|
return Quantity{i: int64Amount{value: result, scale: Scale(scale)}, Format: format, s: str}, nil |
|
} |
|
} |
|
return Quantity{i: int64Amount{value: result, scale: Scale(scale)}, Format: format}, nil |
|
} |
|
} |
|
} |
|
|
|
amount := new(inf.Dec) |
|
if _, ok := amount.SetString(value); !ok { |
|
return Quantity{}, ErrNumeric |
|
} |
|
|
|
// So that no one but us has to think about suffixes, remove it. |
|
if base == 10 { |
|
amount.SetScale(amount.Scale() + Scale(exponent).infScale()) |
|
} else if base == 2 { |
|
// numericSuffix = 2 ** exponent |
|
numericSuffix := big.NewInt(1).Lsh(bigOne, uint(exponent)) |
|
ub := amount.UnscaledBig() |
|
amount.SetUnscaledBig(ub.Mul(ub, numericSuffix)) |
|
} |
|
|
|
// Cap at min/max bounds. |
|
sign := amount.Sign() |
|
if sign == -1 { |
|
amount.Neg(amount) |
|
} |
|
|
|
// This rounds non-zero values up to the minimum representable value, under the theory that |
|
// if you want some resources, you should get some resources, even if you asked for way too small |
|
// of an amount. Arguably, this should be inf.RoundHalfUp (normal rounding), but that would have |
|
// the side effect of rounding values < .5n to zero. |
|
if v, ok := amount.Unscaled(); v != int64(0) || !ok { |
|
amount.Round(amount, Nano.infScale(), inf.RoundUp) |
|
} |
|
|
|
// The max is just a simple cap. |
|
// TODO: this prevents accumulating quantities greater than int64, for instance quota across a cluster |
|
if format == BinarySI && amount.Cmp(maxAllowed.Dec) > 0 { |
|
amount.Set(maxAllowed.Dec) |
|
} |
|
|
|
if format == BinarySI && amount.Cmp(decOne) < 0 && amount.Cmp(decZero) > 0 { |
|
// This avoids rounding and hopefully confusion, too. |
|
format = DecimalSI |
|
} |
|
if sign == -1 { |
|
amount.Neg(amount) |
|
} |
|
|
|
return Quantity{d: infDecAmount{amount}, Format: format}, nil |
|
} |
|
|
|
// DeepCopy returns a deep-copy of the Quantity value. Note that the method |
|
// receiver is a value, so we can mutate it in-place and return it. |
|
func (q Quantity) DeepCopy() Quantity { |
|
if q.d.Dec != nil { |
|
tmp := &inf.Dec{} |
|
q.d.Dec = tmp.Set(q.d.Dec) |
|
} |
|
return q |
|
} |
|
|
|
// OpenAPISchemaType is used by the kube-openapi generator when constructing |
|
// the OpenAPI spec of this type. |
|
// |
|
// See: https://github.com/kubernetes/kube-openapi/tree/master/pkg/generators |
|
func (_ Quantity) OpenAPISchemaType() []string { return []string{"string"} } |
|
|
|
// OpenAPISchemaFormat is used by the kube-openapi generator when constructing |
|
// the OpenAPI spec of this type. |
|
func (_ Quantity) OpenAPISchemaFormat() string { return "" } |
|
|
|
// CanonicalizeBytes returns the canonical form of q and its suffix (see comment on Quantity). |
|
// |
|
// Note about BinarySI: |
|
// * If q.Format is set to BinarySI and q.Amount represents a non-zero value between |
|
// -1 and +1, it will be emitted as if q.Format were DecimalSI. |
|
// * Otherwise, if q.Format is set to BinarySI, fractional parts of q.Amount will be |
|
// rounded up. (1.1i becomes 2i.) |
|
func (q *Quantity) CanonicalizeBytes(out []byte) (result, suffix []byte) { |
|
if q.IsZero() { |
|
return zeroBytes, nil |
|
} |
|
|
|
var rounded CanonicalValue |
|
format := q.Format |
|
switch format { |
|
case DecimalExponent, DecimalSI: |
|
case BinarySI: |
|
if q.CmpInt64(-1024) > 0 && q.CmpInt64(1024) < 0 { |
|
// This avoids rounding and hopefully confusion, too. |
|
format = DecimalSI |
|
} else { |
|
var exact bool |
|
if rounded, exact = q.AsScale(0); !exact { |
|
// Don't lose precision-- show as DecimalSI |
|
format = DecimalSI |
|
} |
|
} |
|
default: |
|
format = DecimalExponent |
|
} |
|
|
|
// TODO: If BinarySI formatting is requested but would cause rounding, upgrade to |
|
// one of the other formats. |
|
switch format { |
|
case DecimalExponent, DecimalSI: |
|
number, exponent := q.AsCanonicalBytes(out) |
|
suffix, _ := quantitySuffixer.constructBytes(10, exponent, format) |
|
return number, suffix |
|
default: |
|
// format must be BinarySI |
|
number, exponent := rounded.AsCanonicalBase1024Bytes(out) |
|
suffix, _ := quantitySuffixer.constructBytes(2, exponent*10, format) |
|
return number, suffix |
|
} |
|
} |
|
|
|
// AsInt64 returns a representation of the current value as an int64 if a fast conversion |
|
// is possible. If false is returned, callers must use the inf.Dec form of this quantity. |
|
func (q *Quantity) AsInt64() (int64, bool) { |
|
if q.d.Dec != nil { |
|
return 0, false |
|
} |
|
return q.i.AsInt64() |
|
} |
|
|
|
// ToDec promotes the quantity in place to use an inf.Dec representation and returns itself. |
|
func (q *Quantity) ToDec() *Quantity { |
|
if q.d.Dec == nil { |
|
q.d.Dec = q.i.AsDec() |
|
q.i = int64Amount{} |
|
} |
|
return q |
|
} |
|
|
|
// AsDec returns the quantity as represented by a scaled inf.Dec. |
|
func (q *Quantity) AsDec() *inf.Dec { |
|
if q.d.Dec != nil { |
|
return q.d.Dec |
|
} |
|
q.d.Dec = q.i.AsDec() |
|
q.i = int64Amount{} |
|
return q.d.Dec |
|
} |
|
|
|
// AsCanonicalBytes returns the canonical byte representation of this quantity as a mantissa |
|
// and base 10 exponent. The out byte slice may be passed to the method to avoid an extra |
|
// allocation. |
|
func (q *Quantity) AsCanonicalBytes(out []byte) (result []byte, exponent int32) { |
|
if q.d.Dec != nil { |
|
return q.d.AsCanonicalBytes(out) |
|
} |
|
return q.i.AsCanonicalBytes(out) |
|
} |
|
|
|
// IsZero returns true if the quantity is equal to zero. |
|
func (q *Quantity) IsZero() bool { |
|
if q.d.Dec != nil { |
|
return q.d.Dec.Sign() == 0 |
|
} |
|
return q.i.value == 0 |
|
} |
|
|
|
// Sign returns 0 if the quantity is zero, -1 if the quantity is less than zero, or 1 if the |
|
// quantity is greater than zero. |
|
func (q *Quantity) Sign() int { |
|
if q.d.Dec != nil { |
|
return q.d.Dec.Sign() |
|
} |
|
return q.i.Sign() |
|
} |
|
|
|
// AsScaled returns the current value, rounded up to the provided scale, and returns |
|
// false if the scale resulted in a loss of precision. |
|
func (q *Quantity) AsScale(scale Scale) (CanonicalValue, bool) { |
|
if q.d.Dec != nil { |
|
return q.d.AsScale(scale) |
|
} |
|
return q.i.AsScale(scale) |
|
} |
|
|
|
// RoundUp updates the quantity to the provided scale, ensuring that the value is at |
|
// least 1. False is returned if the rounding operation resulted in a loss of precision. |
|
// Negative numbers are rounded away from zero (-9 scale 1 rounds to -10). |
|
func (q *Quantity) RoundUp(scale Scale) bool { |
|
if q.d.Dec != nil { |
|
q.s = "" |
|
d, exact := q.d.AsScale(scale) |
|
q.d = d |
|
return exact |
|
} |
|
// avoid clearing the string value if we have already calculated it |
|
if q.i.scale >= scale { |
|
return true |
|
} |
|
q.s = "" |
|
i, exact := q.i.AsScale(scale) |
|
q.i = i |
|
return exact |
|
} |
|
|
|
// Add adds the provide y quantity to the current value. If the current value is zero, |
|
// the format of the quantity will be updated to the format of y. |
|
func (q *Quantity) Add(y Quantity) { |
|
q.s = "" |
|
if q.d.Dec == nil && y.d.Dec == nil { |
|
if q.i.value == 0 { |
|
q.Format = y.Format |
|
} |
|
if q.i.Add(y.i) { |
|
return |
|
} |
|
} else if q.IsZero() { |
|
q.Format = y.Format |
|
} |
|
q.ToDec().d.Dec.Add(q.d.Dec, y.AsDec()) |
|
} |
|
|
|
// Sub subtracts the provided quantity from the current value in place. If the current |
|
// value is zero, the format of the quantity will be updated to the format of y. |
|
func (q *Quantity) Sub(y Quantity) { |
|
q.s = "" |
|
if q.IsZero() { |
|
q.Format = y.Format |
|
} |
|
if q.d.Dec == nil && y.d.Dec == nil && q.i.Sub(y.i) { |
|
return |
|
} |
|
q.ToDec().d.Dec.Sub(q.d.Dec, y.AsDec()) |
|
} |
|
|
|
// Cmp returns 0 if the quantity is equal to y, -1 if the quantity is less than y, or 1 if the |
|
// quantity is greater than y. |
|
func (q *Quantity) Cmp(y Quantity) int { |
|
if q.d.Dec == nil && y.d.Dec == nil { |
|
return q.i.Cmp(y.i) |
|
} |
|
return q.AsDec().Cmp(y.AsDec()) |
|
} |
|
|
|
// CmpInt64 returns 0 if the quantity is equal to y, -1 if the quantity is less than y, or 1 if the |
|
// quantity is greater than y. |
|
func (q *Quantity) CmpInt64(y int64) int { |
|
if q.d.Dec != nil { |
|
return q.d.Dec.Cmp(inf.NewDec(y, inf.Scale(0))) |
|
} |
|
return q.i.Cmp(int64Amount{value: y}) |
|
} |
|
|
|
// Neg sets quantity to be the negative value of itself. |
|
func (q *Quantity) Neg() { |
|
q.s = "" |
|
if q.d.Dec == nil { |
|
q.i.value = -q.i.value |
|
return |
|
} |
|
q.d.Dec.Neg(q.d.Dec) |
|
} |
|
|
|
// int64QuantityExpectedBytes is the expected width in bytes of the canonical string representation |
|
// of most Quantity values. |
|
const int64QuantityExpectedBytes = 18 |
|
|
|
// String formats the Quantity as a string, caching the result if not calculated. |
|
// String is an expensive operation and caching this result significantly reduces the cost of |
|
// normal parse / marshal operations on Quantity. |
|
func (q *Quantity) String() string { |
|
if len(q.s) == 0 { |
|
result := make([]byte, 0, int64QuantityExpectedBytes) |
|
number, suffix := q.CanonicalizeBytes(result) |
|
number = append(number, suffix...) |
|
q.s = string(number) |
|
} |
|
return q.s |
|
} |
|
|
|
// MarshalJSON implements the json.Marshaller interface. |
|
func (q Quantity) MarshalJSON() ([]byte, error) { |
|
if len(q.s) > 0 { |
|
out := make([]byte, len(q.s)+2) |
|
out[0], out[len(out)-1] = '"', '"' |
|
copy(out[1:], q.s) |
|
return out, nil |
|
} |
|
result := make([]byte, int64QuantityExpectedBytes, int64QuantityExpectedBytes) |
|
result[0] = '"' |
|
number, suffix := q.CanonicalizeBytes(result[1:1]) |
|
// if the same slice was returned to us that we passed in, avoid another allocation by copying number into |
|
// the source slice and returning that |
|
if len(number) > 0 && &number[0] == &result[1] && (len(number)+len(suffix)+2) <= int64QuantityExpectedBytes { |
|
number = append(number, suffix...) |
|
number = append(number, '"') |
|
return result[:1+len(number)], nil |
|
} |
|
// if CanonicalizeBytes needed more space than our slice provided, we may need to allocate again so use |
|
// append |
|
result = result[:1] |
|
result = append(result, number...) |
|
result = append(result, suffix...) |
|
result = append(result, '"') |
|
return result, nil |
|
} |
|
|
|
// UnmarshalJSON implements the json.Unmarshaller interface. |
|
// TODO: Remove support for leading/trailing whitespace |
|
func (q *Quantity) UnmarshalJSON(value []byte) error { |
|
l := len(value) |
|
if l == 4 && bytes.Equal(value, []byte("null")) { |
|
q.d.Dec = nil |
|
q.i = int64Amount{} |
|
return nil |
|
} |
|
if l >= 2 && value[0] == '"' && value[l-1] == '"' { |
|
value = value[1 : l-1] |
|
} |
|
|
|
parsed, err := ParseQuantity(strings.TrimSpace(string(value))) |
|
if err != nil { |
|
return err |
|
} |
|
|
|
// This copy is safe because parsed will not be referred to again. |
|
*q = parsed |
|
return nil |
|
} |
|
|
|
// NewQuantity returns a new Quantity representing the given |
|
// value in the given format. |
|
func NewQuantity(value int64, format Format) *Quantity { |
|
return &Quantity{ |
|
i: int64Amount{value: value}, |
|
Format: format, |
|
} |
|
} |
|
|
|
// NewMilliQuantity returns a new Quantity representing the given |
|
// value * 1/1000 in the given format. Note that BinarySI formatting |
|
// will round fractional values, and will be changed to DecimalSI for |
|
// values x where (-1 < x < 1) && (x != 0). |
|
func NewMilliQuantity(value int64, format Format) *Quantity { |
|
return &Quantity{ |
|
i: int64Amount{value: value, scale: -3}, |
|
Format: format, |
|
} |
|
} |
|
|
|
// NewScaledQuantity returns a new Quantity representing the given |
|
// value * 10^scale in DecimalSI format. |
|
func NewScaledQuantity(value int64, scale Scale) *Quantity { |
|
return &Quantity{ |
|
i: int64Amount{value: value, scale: scale}, |
|
Format: DecimalSI, |
|
} |
|
} |
|
|
|
// Value returns the value of q; any fractional part will be lost. |
|
func (q *Quantity) Value() int64 { |
|
return q.ScaledValue(0) |
|
} |
|
|
|
// MilliValue returns the value of ceil(q * 1000); this could overflow an int64; |
|
// if that's a concern, call Value() first to verify the number is small enough. |
|
func (q *Quantity) MilliValue() int64 { |
|
return q.ScaledValue(Milli) |
|
} |
|
|
|
// ScaledValue returns the value of ceil(q * 10^scale); this could overflow an int64. |
|
// To detect overflow, call Value() first and verify the expected magnitude. |
|
func (q *Quantity) ScaledValue(scale Scale) int64 { |
|
if q.d.Dec == nil { |
|
i, _ := q.i.AsScaledInt64(scale) |
|
return i |
|
} |
|
dec := q.d.Dec |
|
return scaledValue(dec.UnscaledBig(), int(dec.Scale()), int(scale.infScale())) |
|
} |
|
|
|
// Set sets q's value to be value. |
|
func (q *Quantity) Set(value int64) { |
|
q.SetScaled(value, 0) |
|
} |
|
|
|
// SetMilli sets q's value to be value * 1/1000. |
|
func (q *Quantity) SetMilli(value int64) { |
|
q.SetScaled(value, Milli) |
|
} |
|
|
|
// SetScaled sets q's value to be value * 10^scale |
|
func (q *Quantity) SetScaled(value int64, scale Scale) { |
|
q.s = "" |
|
q.d.Dec = nil |
|
q.i = int64Amount{value: value, scale: scale} |
|
} |
|
|
|
// Copy is a convenience function that makes a deep copy for you. Non-deep |
|
// copies of quantities share pointers and you will regret that. |
|
func (q *Quantity) Copy() *Quantity { |
|
if q.d.Dec == nil { |
|
return &Quantity{ |
|
s: q.s, |
|
i: q.i, |
|
Format: q.Format, |
|
} |
|
} |
|
tmp := &inf.Dec{} |
|
return &Quantity{ |
|
s: q.s, |
|
d: infDecAmount{tmp.Set(q.d.Dec)}, |
|
Format: q.Format, |
|
} |
|
}
|
|
|