You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
525 lines
15 KiB
525 lines
15 KiB
// Copyright 2015 The Go Authors. All rights reserved. |
|
// Use of this source code is governed by a BSD-style |
|
// license that can be found in the LICENSE file. |
|
|
|
// Package timeseries implements a time series structure for stats collection. |
|
package timeseries // import "golang.org/x/net/internal/timeseries" |
|
|
|
import ( |
|
"fmt" |
|
"log" |
|
"time" |
|
) |
|
|
|
const ( |
|
timeSeriesNumBuckets = 64 |
|
minuteHourSeriesNumBuckets = 60 |
|
) |
|
|
|
var timeSeriesResolutions = []time.Duration{ |
|
1 * time.Second, |
|
10 * time.Second, |
|
1 * time.Minute, |
|
10 * time.Minute, |
|
1 * time.Hour, |
|
6 * time.Hour, |
|
24 * time.Hour, // 1 day |
|
7 * 24 * time.Hour, // 1 week |
|
4 * 7 * 24 * time.Hour, // 4 weeks |
|
16 * 7 * 24 * time.Hour, // 16 weeks |
|
} |
|
|
|
var minuteHourSeriesResolutions = []time.Duration{ |
|
1 * time.Second, |
|
1 * time.Minute, |
|
} |
|
|
|
// An Observable is a kind of data that can be aggregated in a time series. |
|
type Observable interface { |
|
Multiply(ratio float64) // Multiplies the data in self by a given ratio |
|
Add(other Observable) // Adds the data from a different observation to self |
|
Clear() // Clears the observation so it can be reused. |
|
CopyFrom(other Observable) // Copies the contents of a given observation to self |
|
} |
|
|
|
// Float attaches the methods of Observable to a float64. |
|
type Float float64 |
|
|
|
// NewFloat returns a Float. |
|
func NewFloat() Observable { |
|
f := Float(0) |
|
return &f |
|
} |
|
|
|
// String returns the float as a string. |
|
func (f *Float) String() string { return fmt.Sprintf("%g", f.Value()) } |
|
|
|
// Value returns the float's value. |
|
func (f *Float) Value() float64 { return float64(*f) } |
|
|
|
func (f *Float) Multiply(ratio float64) { *f *= Float(ratio) } |
|
|
|
func (f *Float) Add(other Observable) { |
|
o := other.(*Float) |
|
*f += *o |
|
} |
|
|
|
func (f *Float) Clear() { *f = 0 } |
|
|
|
func (f *Float) CopyFrom(other Observable) { |
|
o := other.(*Float) |
|
*f = *o |
|
} |
|
|
|
// A Clock tells the current time. |
|
type Clock interface { |
|
Time() time.Time |
|
} |
|
|
|
type defaultClock int |
|
|
|
var defaultClockInstance defaultClock |
|
|
|
func (defaultClock) Time() time.Time { return time.Now() } |
|
|
|
// Information kept per level. Each level consists of a circular list of |
|
// observations. The start of the level may be derived from end and the |
|
// len(buckets) * sizeInMillis. |
|
type tsLevel struct { |
|
oldest int // index to oldest bucketed Observable |
|
newest int // index to newest bucketed Observable |
|
end time.Time // end timestamp for this level |
|
size time.Duration // duration of the bucketed Observable |
|
buckets []Observable // collections of observations |
|
provider func() Observable // used for creating new Observable |
|
} |
|
|
|
func (l *tsLevel) Clear() { |
|
l.oldest = 0 |
|
l.newest = len(l.buckets) - 1 |
|
l.end = time.Time{} |
|
for i := range l.buckets { |
|
if l.buckets[i] != nil { |
|
l.buckets[i].Clear() |
|
l.buckets[i] = nil |
|
} |
|
} |
|
} |
|
|
|
func (l *tsLevel) InitLevel(size time.Duration, numBuckets int, f func() Observable) { |
|
l.size = size |
|
l.provider = f |
|
l.buckets = make([]Observable, numBuckets) |
|
} |
|
|
|
// Keeps a sequence of levels. Each level is responsible for storing data at |
|
// a given resolution. For example, the first level stores data at a one |
|
// minute resolution while the second level stores data at a one hour |
|
// resolution. |
|
|
|
// Each level is represented by a sequence of buckets. Each bucket spans an |
|
// interval equal to the resolution of the level. New observations are added |
|
// to the last bucket. |
|
type timeSeries struct { |
|
provider func() Observable // make more Observable |
|
numBuckets int // number of buckets in each level |
|
levels []*tsLevel // levels of bucketed Observable |
|
lastAdd time.Time // time of last Observable tracked |
|
total Observable // convenient aggregation of all Observable |
|
clock Clock // Clock for getting current time |
|
pending Observable // observations not yet bucketed |
|
pendingTime time.Time // what time are we keeping in pending |
|
dirty bool // if there are pending observations |
|
} |
|
|
|
// init initializes a level according to the supplied criteria. |
|
func (ts *timeSeries) init(resolutions []time.Duration, f func() Observable, numBuckets int, clock Clock) { |
|
ts.provider = f |
|
ts.numBuckets = numBuckets |
|
ts.clock = clock |
|
ts.levels = make([]*tsLevel, len(resolutions)) |
|
|
|
for i := range resolutions { |
|
if i > 0 && resolutions[i-1] >= resolutions[i] { |
|
log.Print("timeseries: resolutions must be monotonically increasing") |
|
break |
|
} |
|
newLevel := new(tsLevel) |
|
newLevel.InitLevel(resolutions[i], ts.numBuckets, ts.provider) |
|
ts.levels[i] = newLevel |
|
} |
|
|
|
ts.Clear() |
|
} |
|
|
|
// Clear removes all observations from the time series. |
|
func (ts *timeSeries) Clear() { |
|
ts.lastAdd = time.Time{} |
|
ts.total = ts.resetObservation(ts.total) |
|
ts.pending = ts.resetObservation(ts.pending) |
|
ts.pendingTime = time.Time{} |
|
ts.dirty = false |
|
|
|
for i := range ts.levels { |
|
ts.levels[i].Clear() |
|
} |
|
} |
|
|
|
// Add records an observation at the current time. |
|
func (ts *timeSeries) Add(observation Observable) { |
|
ts.AddWithTime(observation, ts.clock.Time()) |
|
} |
|
|
|
// AddWithTime records an observation at the specified time. |
|
func (ts *timeSeries) AddWithTime(observation Observable, t time.Time) { |
|
|
|
smallBucketDuration := ts.levels[0].size |
|
|
|
if t.After(ts.lastAdd) { |
|
ts.lastAdd = t |
|
} |
|
|
|
if t.After(ts.pendingTime) { |
|
ts.advance(t) |
|
ts.mergePendingUpdates() |
|
ts.pendingTime = ts.levels[0].end |
|
ts.pending.CopyFrom(observation) |
|
ts.dirty = true |
|
} else if t.After(ts.pendingTime.Add(-1 * smallBucketDuration)) { |
|
// The observation is close enough to go into the pending bucket. |
|
// This compensates for clock skewing and small scheduling delays |
|
// by letting the update stay in the fast path. |
|
ts.pending.Add(observation) |
|
ts.dirty = true |
|
} else { |
|
ts.mergeValue(observation, t) |
|
} |
|
} |
|
|
|
// mergeValue inserts the observation at the specified time in the past into all levels. |
|
func (ts *timeSeries) mergeValue(observation Observable, t time.Time) { |
|
for _, level := range ts.levels { |
|
index := (ts.numBuckets - 1) - int(level.end.Sub(t)/level.size) |
|
if 0 <= index && index < ts.numBuckets { |
|
bucketNumber := (level.oldest + index) % ts.numBuckets |
|
if level.buckets[bucketNumber] == nil { |
|
level.buckets[bucketNumber] = level.provider() |
|
} |
|
level.buckets[bucketNumber].Add(observation) |
|
} |
|
} |
|
ts.total.Add(observation) |
|
} |
|
|
|
// mergePendingUpdates applies the pending updates into all levels. |
|
func (ts *timeSeries) mergePendingUpdates() { |
|
if ts.dirty { |
|
ts.mergeValue(ts.pending, ts.pendingTime) |
|
ts.pending = ts.resetObservation(ts.pending) |
|
ts.dirty = false |
|
} |
|
} |
|
|
|
// advance cycles the buckets at each level until the latest bucket in |
|
// each level can hold the time specified. |
|
func (ts *timeSeries) advance(t time.Time) { |
|
if !t.After(ts.levels[0].end) { |
|
return |
|
} |
|
for i := 0; i < len(ts.levels); i++ { |
|
level := ts.levels[i] |
|
if !level.end.Before(t) { |
|
break |
|
} |
|
|
|
// If the time is sufficiently far, just clear the level and advance |
|
// directly. |
|
if !t.Before(level.end.Add(level.size * time.Duration(ts.numBuckets))) { |
|
for _, b := range level.buckets { |
|
ts.resetObservation(b) |
|
} |
|
level.end = time.Unix(0, (t.UnixNano()/level.size.Nanoseconds())*level.size.Nanoseconds()) |
|
} |
|
|
|
for t.After(level.end) { |
|
level.end = level.end.Add(level.size) |
|
level.newest = level.oldest |
|
level.oldest = (level.oldest + 1) % ts.numBuckets |
|
ts.resetObservation(level.buckets[level.newest]) |
|
} |
|
|
|
t = level.end |
|
} |
|
} |
|
|
|
// Latest returns the sum of the num latest buckets from the level. |
|
func (ts *timeSeries) Latest(level, num int) Observable { |
|
now := ts.clock.Time() |
|
if ts.levels[0].end.Before(now) { |
|
ts.advance(now) |
|
} |
|
|
|
ts.mergePendingUpdates() |
|
|
|
result := ts.provider() |
|
l := ts.levels[level] |
|
index := l.newest |
|
|
|
for i := 0; i < num; i++ { |
|
if l.buckets[index] != nil { |
|
result.Add(l.buckets[index]) |
|
} |
|
if index == 0 { |
|
index = ts.numBuckets |
|
} |
|
index-- |
|
} |
|
|
|
return result |
|
} |
|
|
|
// LatestBuckets returns a copy of the num latest buckets from level. |
|
func (ts *timeSeries) LatestBuckets(level, num int) []Observable { |
|
if level < 0 || level > len(ts.levels) { |
|
log.Print("timeseries: bad level argument: ", level) |
|
return nil |
|
} |
|
if num < 0 || num >= ts.numBuckets { |
|
log.Print("timeseries: bad num argument: ", num) |
|
return nil |
|
} |
|
|
|
results := make([]Observable, num) |
|
now := ts.clock.Time() |
|
if ts.levels[0].end.Before(now) { |
|
ts.advance(now) |
|
} |
|
|
|
ts.mergePendingUpdates() |
|
|
|
l := ts.levels[level] |
|
index := l.newest |
|
|
|
for i := 0; i < num; i++ { |
|
result := ts.provider() |
|
results[i] = result |
|
if l.buckets[index] != nil { |
|
result.CopyFrom(l.buckets[index]) |
|
} |
|
|
|
if index == 0 { |
|
index = ts.numBuckets |
|
} |
|
index -= 1 |
|
} |
|
return results |
|
} |
|
|
|
// ScaleBy updates observations by scaling by factor. |
|
func (ts *timeSeries) ScaleBy(factor float64) { |
|
for _, l := range ts.levels { |
|
for i := 0; i < ts.numBuckets; i++ { |
|
l.buckets[i].Multiply(factor) |
|
} |
|
} |
|
|
|
ts.total.Multiply(factor) |
|
ts.pending.Multiply(factor) |
|
} |
|
|
|
// Range returns the sum of observations added over the specified time range. |
|
// If start or finish times don't fall on bucket boundaries of the same |
|
// level, then return values are approximate answers. |
|
func (ts *timeSeries) Range(start, finish time.Time) Observable { |
|
return ts.ComputeRange(start, finish, 1)[0] |
|
} |
|
|
|
// Recent returns the sum of observations from the last delta. |
|
func (ts *timeSeries) Recent(delta time.Duration) Observable { |
|
now := ts.clock.Time() |
|
return ts.Range(now.Add(-delta), now) |
|
} |
|
|
|
// Total returns the total of all observations. |
|
func (ts *timeSeries) Total() Observable { |
|
ts.mergePendingUpdates() |
|
return ts.total |
|
} |
|
|
|
// ComputeRange computes a specified number of values into a slice using |
|
// the observations recorded over the specified time period. The return |
|
// values are approximate if the start or finish times don't fall on the |
|
// bucket boundaries at the same level or if the number of buckets spanning |
|
// the range is not an integral multiple of num. |
|
func (ts *timeSeries) ComputeRange(start, finish time.Time, num int) []Observable { |
|
if start.After(finish) { |
|
log.Printf("timeseries: start > finish, %v>%v", start, finish) |
|
return nil |
|
} |
|
|
|
if num < 0 { |
|
log.Printf("timeseries: num < 0, %v", num) |
|
return nil |
|
} |
|
|
|
results := make([]Observable, num) |
|
|
|
for _, l := range ts.levels { |
|
if !start.Before(l.end.Add(-l.size * time.Duration(ts.numBuckets))) { |
|
ts.extract(l, start, finish, num, results) |
|
return results |
|
} |
|
} |
|
|
|
// Failed to find a level that covers the desired range. So just |
|
// extract from the last level, even if it doesn't cover the entire |
|
// desired range. |
|
ts.extract(ts.levels[len(ts.levels)-1], start, finish, num, results) |
|
|
|
return results |
|
} |
|
|
|
// RecentList returns the specified number of values in slice over the most |
|
// recent time period of the specified range. |
|
func (ts *timeSeries) RecentList(delta time.Duration, num int) []Observable { |
|
if delta < 0 { |
|
return nil |
|
} |
|
now := ts.clock.Time() |
|
return ts.ComputeRange(now.Add(-delta), now, num) |
|
} |
|
|
|
// extract returns a slice of specified number of observations from a given |
|
// level over a given range. |
|
func (ts *timeSeries) extract(l *tsLevel, start, finish time.Time, num int, results []Observable) { |
|
ts.mergePendingUpdates() |
|
|
|
srcInterval := l.size |
|
dstInterval := finish.Sub(start) / time.Duration(num) |
|
dstStart := start |
|
srcStart := l.end.Add(-srcInterval * time.Duration(ts.numBuckets)) |
|
|
|
srcIndex := 0 |
|
|
|
// Where should scanning start? |
|
if dstStart.After(srcStart) { |
|
advance := dstStart.Sub(srcStart) / srcInterval |
|
srcIndex += int(advance) |
|
srcStart = srcStart.Add(advance * srcInterval) |
|
} |
|
|
|
// The i'th value is computed as show below. |
|
// interval = (finish/start)/num |
|
// i'th value = sum of observation in range |
|
// [ start + i * interval, |
|
// start + (i + 1) * interval ) |
|
for i := 0; i < num; i++ { |
|
results[i] = ts.resetObservation(results[i]) |
|
dstEnd := dstStart.Add(dstInterval) |
|
for srcIndex < ts.numBuckets && srcStart.Before(dstEnd) { |
|
srcEnd := srcStart.Add(srcInterval) |
|
if srcEnd.After(ts.lastAdd) { |
|
srcEnd = ts.lastAdd |
|
} |
|
|
|
if !srcEnd.Before(dstStart) { |
|
srcValue := l.buckets[(srcIndex+l.oldest)%ts.numBuckets] |
|
if !srcStart.Before(dstStart) && !srcEnd.After(dstEnd) { |
|
// dst completely contains src. |
|
if srcValue != nil { |
|
results[i].Add(srcValue) |
|
} |
|
} else { |
|
// dst partially overlaps src. |
|
overlapStart := maxTime(srcStart, dstStart) |
|
overlapEnd := minTime(srcEnd, dstEnd) |
|
base := srcEnd.Sub(srcStart) |
|
fraction := overlapEnd.Sub(overlapStart).Seconds() / base.Seconds() |
|
|
|
used := ts.provider() |
|
if srcValue != nil { |
|
used.CopyFrom(srcValue) |
|
} |
|
used.Multiply(fraction) |
|
results[i].Add(used) |
|
} |
|
|
|
if srcEnd.After(dstEnd) { |
|
break |
|
} |
|
} |
|
srcIndex++ |
|
srcStart = srcStart.Add(srcInterval) |
|
} |
|
dstStart = dstStart.Add(dstInterval) |
|
} |
|
} |
|
|
|
// resetObservation clears the content so the struct may be reused. |
|
func (ts *timeSeries) resetObservation(observation Observable) Observable { |
|
if observation == nil { |
|
observation = ts.provider() |
|
} else { |
|
observation.Clear() |
|
} |
|
return observation |
|
} |
|
|
|
// TimeSeries tracks data at granularities from 1 second to 16 weeks. |
|
type TimeSeries struct { |
|
timeSeries |
|
} |
|
|
|
// NewTimeSeries creates a new TimeSeries using the function provided for creating new Observable. |
|
func NewTimeSeries(f func() Observable) *TimeSeries { |
|
return NewTimeSeriesWithClock(f, defaultClockInstance) |
|
} |
|
|
|
// NewTimeSeriesWithClock creates a new TimeSeries using the function provided for creating new Observable and the clock for |
|
// assigning timestamps. |
|
func NewTimeSeriesWithClock(f func() Observable, clock Clock) *TimeSeries { |
|
ts := new(TimeSeries) |
|
ts.timeSeries.init(timeSeriesResolutions, f, timeSeriesNumBuckets, clock) |
|
return ts |
|
} |
|
|
|
// MinuteHourSeries tracks data at granularities of 1 minute and 1 hour. |
|
type MinuteHourSeries struct { |
|
timeSeries |
|
} |
|
|
|
// NewMinuteHourSeries creates a new MinuteHourSeries using the function provided for creating new Observable. |
|
func NewMinuteHourSeries(f func() Observable) *MinuteHourSeries { |
|
return NewMinuteHourSeriesWithClock(f, defaultClockInstance) |
|
} |
|
|
|
// NewMinuteHourSeriesWithClock creates a new MinuteHourSeries using the function provided for creating new Observable and the clock for |
|
// assigning timestamps. |
|
func NewMinuteHourSeriesWithClock(f func() Observable, clock Clock) *MinuteHourSeries { |
|
ts := new(MinuteHourSeries) |
|
ts.timeSeries.init(minuteHourSeriesResolutions, f, |
|
minuteHourSeriesNumBuckets, clock) |
|
return ts |
|
} |
|
|
|
func (ts *MinuteHourSeries) Minute() Observable { |
|
return ts.timeSeries.Latest(0, 60) |
|
} |
|
|
|
func (ts *MinuteHourSeries) Hour() Observable { |
|
return ts.timeSeries.Latest(1, 60) |
|
} |
|
|
|
func minTime(a, b time.Time) time.Time { |
|
if a.Before(b) { |
|
return a |
|
} |
|
return b |
|
} |
|
|
|
func maxTime(a, b time.Time) time.Time { |
|
if a.After(b) { |
|
return a |
|
} |
|
return b |
|
}
|
|
|