You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
363 lines
12 KiB
363 lines
12 KiB
// Copyright 2017, The Go Authors. All rights reserved. |
|
// Use of this source code is governed by a BSD-style |
|
// license that can be found in the LICENSE.md file. |
|
|
|
// Package diff implements an algorithm for producing edit-scripts. |
|
// The edit-script is a sequence of operations needed to transform one list |
|
// of symbols into another (or vice-versa). The edits allowed are insertions, |
|
// deletions, and modifications. The summation of all edits is called the |
|
// Levenshtein distance as this problem is well-known in computer science. |
|
// |
|
// This package prioritizes performance over accuracy. That is, the run time |
|
// is more important than obtaining a minimal Levenshtein distance. |
|
package diff |
|
|
|
// EditType represents a single operation within an edit-script. |
|
type EditType uint8 |
|
|
|
const ( |
|
// Identity indicates that a symbol pair is identical in both list X and Y. |
|
Identity EditType = iota |
|
// UniqueX indicates that a symbol only exists in X and not Y. |
|
UniqueX |
|
// UniqueY indicates that a symbol only exists in Y and not X. |
|
UniqueY |
|
// Modified indicates that a symbol pair is a modification of each other. |
|
Modified |
|
) |
|
|
|
// EditScript represents the series of differences between two lists. |
|
type EditScript []EditType |
|
|
|
// String returns a human-readable string representing the edit-script where |
|
// Identity, UniqueX, UniqueY, and Modified are represented by the |
|
// '.', 'X', 'Y', and 'M' characters, respectively. |
|
func (es EditScript) String() string { |
|
b := make([]byte, len(es)) |
|
for i, e := range es { |
|
switch e { |
|
case Identity: |
|
b[i] = '.' |
|
case UniqueX: |
|
b[i] = 'X' |
|
case UniqueY: |
|
b[i] = 'Y' |
|
case Modified: |
|
b[i] = 'M' |
|
default: |
|
panic("invalid edit-type") |
|
} |
|
} |
|
return string(b) |
|
} |
|
|
|
// stats returns a histogram of the number of each type of edit operation. |
|
func (es EditScript) stats() (s struct{ NI, NX, NY, NM int }) { |
|
for _, e := range es { |
|
switch e { |
|
case Identity: |
|
s.NI++ |
|
case UniqueX: |
|
s.NX++ |
|
case UniqueY: |
|
s.NY++ |
|
case Modified: |
|
s.NM++ |
|
default: |
|
panic("invalid edit-type") |
|
} |
|
} |
|
return |
|
} |
|
|
|
// Dist is the Levenshtein distance and is guaranteed to be 0 if and only if |
|
// lists X and Y are equal. |
|
func (es EditScript) Dist() int { return len(es) - es.stats().NI } |
|
|
|
// LenX is the length of the X list. |
|
func (es EditScript) LenX() int { return len(es) - es.stats().NY } |
|
|
|
// LenY is the length of the Y list. |
|
func (es EditScript) LenY() int { return len(es) - es.stats().NX } |
|
|
|
// EqualFunc reports whether the symbols at indexes ix and iy are equal. |
|
// When called by Difference, the index is guaranteed to be within nx and ny. |
|
type EqualFunc func(ix int, iy int) Result |
|
|
|
// Result is the result of comparison. |
|
// NSame is the number of sub-elements that are equal. |
|
// NDiff is the number of sub-elements that are not equal. |
|
type Result struct{ NSame, NDiff int } |
|
|
|
// Equal indicates whether the symbols are equal. Two symbols are equal |
|
// if and only if NDiff == 0. If Equal, then they are also Similar. |
|
func (r Result) Equal() bool { return r.NDiff == 0 } |
|
|
|
// Similar indicates whether two symbols are similar and may be represented |
|
// by using the Modified type. As a special case, we consider binary comparisons |
|
// (i.e., those that return Result{1, 0} or Result{0, 1}) to be similar. |
|
// |
|
// The exact ratio of NSame to NDiff to determine similarity may change. |
|
func (r Result) Similar() bool { |
|
// Use NSame+1 to offset NSame so that binary comparisons are similar. |
|
return r.NSame+1 >= r.NDiff |
|
} |
|
|
|
// Difference reports whether two lists of lengths nx and ny are equal |
|
// given the definition of equality provided as f. |
|
// |
|
// This function returns an edit-script, which is a sequence of operations |
|
// needed to convert one list into the other. The following invariants for |
|
// the edit-script are maintained: |
|
// • eq == (es.Dist()==0) |
|
// • nx == es.LenX() |
|
// • ny == es.LenY() |
|
// |
|
// This algorithm is not guaranteed to be an optimal solution (i.e., one that |
|
// produces an edit-script with a minimal Levenshtein distance). This algorithm |
|
// favors performance over optimality. The exact output is not guaranteed to |
|
// be stable and may change over time. |
|
func Difference(nx, ny int, f EqualFunc) (es EditScript) { |
|
// This algorithm is based on traversing what is known as an "edit-graph". |
|
// See Figure 1 from "An O(ND) Difference Algorithm and Its Variations" |
|
// by Eugene W. Myers. Since D can be as large as N itself, this is |
|
// effectively O(N^2). Unlike the algorithm from that paper, we are not |
|
// interested in the optimal path, but at least some "decent" path. |
|
// |
|
// For example, let X and Y be lists of symbols: |
|
// X = [A B C A B B A] |
|
// Y = [C B A B A C] |
|
// |
|
// The edit-graph can be drawn as the following: |
|
// A B C A B B A |
|
// ┌─────────────┐ |
|
// C │_|_|\|_|_|_|_│ 0 |
|
// B │_|\|_|_|\|\|_│ 1 |
|
// A │\|_|_|\|_|_|\│ 2 |
|
// B │_|\|_|_|\|\|_│ 3 |
|
// A │\|_|_|\|_|_|\│ 4 |
|
// C │ | |\| | | | │ 5 |
|
// └─────────────┘ 6 |
|
// 0 1 2 3 4 5 6 7 |
|
// |
|
// List X is written along the horizontal axis, while list Y is written |
|
// along the vertical axis. At any point on this grid, if the symbol in |
|
// list X matches the corresponding symbol in list Y, then a '\' is drawn. |
|
// The goal of any minimal edit-script algorithm is to find a path from the |
|
// top-left corner to the bottom-right corner, while traveling through the |
|
// fewest horizontal or vertical edges. |
|
// A horizontal edge is equivalent to inserting a symbol from list X. |
|
// A vertical edge is equivalent to inserting a symbol from list Y. |
|
// A diagonal edge is equivalent to a matching symbol between both X and Y. |
|
|
|
// Invariants: |
|
// • 0 ≤ fwdPath.X ≤ (fwdFrontier.X, revFrontier.X) ≤ revPath.X ≤ nx |
|
// • 0 ≤ fwdPath.Y ≤ (fwdFrontier.Y, revFrontier.Y) ≤ revPath.Y ≤ ny |
|
// |
|
// In general: |
|
// • fwdFrontier.X < revFrontier.X |
|
// • fwdFrontier.Y < revFrontier.Y |
|
// Unless, it is time for the algorithm to terminate. |
|
fwdPath := path{+1, point{0, 0}, make(EditScript, 0, (nx+ny)/2)} |
|
revPath := path{-1, point{nx, ny}, make(EditScript, 0)} |
|
fwdFrontier := fwdPath.point // Forward search frontier |
|
revFrontier := revPath.point // Reverse search frontier |
|
|
|
// Search budget bounds the cost of searching for better paths. |
|
// The longest sequence of non-matching symbols that can be tolerated is |
|
// approximately the square-root of the search budget. |
|
searchBudget := 4 * (nx + ny) // O(n) |
|
|
|
// The algorithm below is a greedy, meet-in-the-middle algorithm for |
|
// computing sub-optimal edit-scripts between two lists. |
|
// |
|
// The algorithm is approximately as follows: |
|
// • Searching for differences switches back-and-forth between |
|
// a search that starts at the beginning (the top-left corner), and |
|
// a search that starts at the end (the bottom-right corner). The goal of |
|
// the search is connect with the search from the opposite corner. |
|
// • As we search, we build a path in a greedy manner, where the first |
|
// match seen is added to the path (this is sub-optimal, but provides a |
|
// decent result in practice). When matches are found, we try the next pair |
|
// of symbols in the lists and follow all matches as far as possible. |
|
// • When searching for matches, we search along a diagonal going through |
|
// through the "frontier" point. If no matches are found, we advance the |
|
// frontier towards the opposite corner. |
|
// • This algorithm terminates when either the X coordinates or the |
|
// Y coordinates of the forward and reverse frontier points ever intersect. |
|
// |
|
// This algorithm is correct even if searching only in the forward direction |
|
// or in the reverse direction. We do both because it is commonly observed |
|
// that two lists commonly differ because elements were added to the front |
|
// or end of the other list. |
|
// |
|
// Running the tests with the "debug" build tag prints a visualization of |
|
// the algorithm running in real-time. This is educational for understanding |
|
// how the algorithm works. See debug_enable.go. |
|
f = debug.Begin(nx, ny, f, &fwdPath.es, &revPath.es) |
|
for { |
|
// Forward search from the beginning. |
|
if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 { |
|
break |
|
} |
|
for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ { |
|
// Search in a diagonal pattern for a match. |
|
z := zigzag(i) |
|
p := point{fwdFrontier.X + z, fwdFrontier.Y - z} |
|
switch { |
|
case p.X >= revPath.X || p.Y < fwdPath.Y: |
|
stop1 = true // Hit top-right corner |
|
case p.Y >= revPath.Y || p.X < fwdPath.X: |
|
stop2 = true // Hit bottom-left corner |
|
case f(p.X, p.Y).Equal(): |
|
// Match found, so connect the path to this point. |
|
fwdPath.connect(p, f) |
|
fwdPath.append(Identity) |
|
// Follow sequence of matches as far as possible. |
|
for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y { |
|
if !f(fwdPath.X, fwdPath.Y).Equal() { |
|
break |
|
} |
|
fwdPath.append(Identity) |
|
} |
|
fwdFrontier = fwdPath.point |
|
stop1, stop2 = true, true |
|
default: |
|
searchBudget-- // Match not found |
|
} |
|
debug.Update() |
|
} |
|
// Advance the frontier towards reverse point. |
|
if revPath.X-fwdFrontier.X >= revPath.Y-fwdFrontier.Y { |
|
fwdFrontier.X++ |
|
} else { |
|
fwdFrontier.Y++ |
|
} |
|
|
|
// Reverse search from the end. |
|
if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 { |
|
break |
|
} |
|
for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ { |
|
// Search in a diagonal pattern for a match. |
|
z := zigzag(i) |
|
p := point{revFrontier.X - z, revFrontier.Y + z} |
|
switch { |
|
case fwdPath.X >= p.X || revPath.Y < p.Y: |
|
stop1 = true // Hit bottom-left corner |
|
case fwdPath.Y >= p.Y || revPath.X < p.X: |
|
stop2 = true // Hit top-right corner |
|
case f(p.X-1, p.Y-1).Equal(): |
|
// Match found, so connect the path to this point. |
|
revPath.connect(p, f) |
|
revPath.append(Identity) |
|
// Follow sequence of matches as far as possible. |
|
for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y { |
|
if !f(revPath.X-1, revPath.Y-1).Equal() { |
|
break |
|
} |
|
revPath.append(Identity) |
|
} |
|
revFrontier = revPath.point |
|
stop1, stop2 = true, true |
|
default: |
|
searchBudget-- // Match not found |
|
} |
|
debug.Update() |
|
} |
|
// Advance the frontier towards forward point. |
|
if revFrontier.X-fwdPath.X >= revFrontier.Y-fwdPath.Y { |
|
revFrontier.X-- |
|
} else { |
|
revFrontier.Y-- |
|
} |
|
} |
|
|
|
// Join the forward and reverse paths and then append the reverse path. |
|
fwdPath.connect(revPath.point, f) |
|
for i := len(revPath.es) - 1; i >= 0; i-- { |
|
t := revPath.es[i] |
|
revPath.es = revPath.es[:i] |
|
fwdPath.append(t) |
|
} |
|
debug.Finish() |
|
return fwdPath.es |
|
} |
|
|
|
type path struct { |
|
dir int // +1 if forward, -1 if reverse |
|
point // Leading point of the EditScript path |
|
es EditScript |
|
} |
|
|
|
// connect appends any necessary Identity, Modified, UniqueX, or UniqueY types |
|
// to the edit-script to connect p.point to dst. |
|
func (p *path) connect(dst point, f EqualFunc) { |
|
if p.dir > 0 { |
|
// Connect in forward direction. |
|
for dst.X > p.X && dst.Y > p.Y { |
|
switch r := f(p.X, p.Y); { |
|
case r.Equal(): |
|
p.append(Identity) |
|
case r.Similar(): |
|
p.append(Modified) |
|
case dst.X-p.X >= dst.Y-p.Y: |
|
p.append(UniqueX) |
|
default: |
|
p.append(UniqueY) |
|
} |
|
} |
|
for dst.X > p.X { |
|
p.append(UniqueX) |
|
} |
|
for dst.Y > p.Y { |
|
p.append(UniqueY) |
|
} |
|
} else { |
|
// Connect in reverse direction. |
|
for p.X > dst.X && p.Y > dst.Y { |
|
switch r := f(p.X-1, p.Y-1); { |
|
case r.Equal(): |
|
p.append(Identity) |
|
case r.Similar(): |
|
p.append(Modified) |
|
case p.Y-dst.Y >= p.X-dst.X: |
|
p.append(UniqueY) |
|
default: |
|
p.append(UniqueX) |
|
} |
|
} |
|
for p.X > dst.X { |
|
p.append(UniqueX) |
|
} |
|
for p.Y > dst.Y { |
|
p.append(UniqueY) |
|
} |
|
} |
|
} |
|
|
|
func (p *path) append(t EditType) { |
|
p.es = append(p.es, t) |
|
switch t { |
|
case Identity, Modified: |
|
p.add(p.dir, p.dir) |
|
case UniqueX: |
|
p.add(p.dir, 0) |
|
case UniqueY: |
|
p.add(0, p.dir) |
|
} |
|
debug.Update() |
|
} |
|
|
|
type point struct{ X, Y int } |
|
|
|
func (p *point) add(dx, dy int) { p.X += dx; p.Y += dy } |
|
|
|
// zigzag maps a consecutive sequence of integers to a zig-zag sequence. |
|
// [0 1 2 3 4 5 ...] => [0 -1 +1 -2 +2 ...] |
|
func zigzag(x int) int { |
|
if x&1 != 0 { |
|
x = ^x |
|
} |
|
return x >> 1 |
|
}
|
|
|