You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
140 lines
4.6 KiB
140 lines
4.6 KiB
package stats |
|
|
|
// Float64Data is a named type for []float64 with helper methods |
|
type Float64Data []float64 |
|
|
|
// Get item in slice |
|
func (f Float64Data) Get(i int) float64 { return f[i] } |
|
|
|
// Len returns length of slice |
|
func (f Float64Data) Len() int { return len(f) } |
|
|
|
// Less returns if one number is less than another |
|
func (f Float64Data) Less(i, j int) bool { return f[i] < f[j] } |
|
|
|
// Swap switches out two numbers in slice |
|
func (f Float64Data) Swap(i, j int) { f[i], f[j] = f[j], f[i] } |
|
|
|
// Min returns the minimum number in the data |
|
func (f Float64Data) Min() (float64, error) { return Min(f) } |
|
|
|
// Max returns the maximum number in the data |
|
func (f Float64Data) Max() (float64, error) { return Max(f) } |
|
|
|
// Sum returns the total of all the numbers in the data |
|
func (f Float64Data) Sum() (float64, error) { return Sum(f) } |
|
|
|
// Mean returns the mean of the data |
|
func (f Float64Data) Mean() (float64, error) { return Mean(f) } |
|
|
|
// Median returns the median of the data |
|
func (f Float64Data) Median() (float64, error) { return Median(f) } |
|
|
|
// Mode returns the mode of the data |
|
func (f Float64Data) Mode() ([]float64, error) { return Mode(f) } |
|
|
|
// GeometricMean returns the median of the data |
|
func (f Float64Data) GeometricMean() (float64, error) { return GeometricMean(f) } |
|
|
|
// HarmonicMean returns the mode of the data |
|
func (f Float64Data) HarmonicMean() (float64, error) { return HarmonicMean(f) } |
|
|
|
// MedianAbsoluteDeviation the median of the absolute deviations from the dataset median |
|
func (f Float64Data) MedianAbsoluteDeviation() (float64, error) { |
|
return MedianAbsoluteDeviation(f) |
|
} |
|
|
|
// MedianAbsoluteDeviationPopulation finds the median of the absolute deviations from the population median |
|
func (f Float64Data) MedianAbsoluteDeviationPopulation() (float64, error) { |
|
return MedianAbsoluteDeviationPopulation(f) |
|
} |
|
|
|
// StandardDeviation the amount of variation in the dataset |
|
func (f Float64Data) StandardDeviation() (float64, error) { |
|
return StandardDeviation(f) |
|
} |
|
|
|
// StandardDeviationPopulation finds the amount of variation from the population |
|
func (f Float64Data) StandardDeviationPopulation() (float64, error) { |
|
return StandardDeviationPopulation(f) |
|
} |
|
|
|
// StandardDeviationSample finds the amount of variation from a sample |
|
func (f Float64Data) StandardDeviationSample() (float64, error) { |
|
return StandardDeviationSample(f) |
|
} |
|
|
|
// QuartileOutliers finds the mild and extreme outliers |
|
func (f Float64Data) QuartileOutliers() (Outliers, error) { |
|
return QuartileOutliers(f) |
|
} |
|
|
|
// Percentile finds the relative standing in a slice of floats |
|
func (f Float64Data) Percentile(p float64) (float64, error) { |
|
return Percentile(f, p) |
|
} |
|
|
|
// PercentileNearestRank finds the relative standing using the Nearest Rank method |
|
func (f Float64Data) PercentileNearestRank(p float64) (float64, error) { |
|
return PercentileNearestRank(f, p) |
|
} |
|
|
|
// Correlation describes the degree of relationship between two sets of data |
|
func (f Float64Data) Correlation(d Float64Data) (float64, error) { |
|
return Correlation(f, d) |
|
} |
|
|
|
// Pearson calculates the Pearson product-moment correlation coefficient between two variables. |
|
func (f Float64Data) Pearson(d Float64Data) (float64, error) { |
|
return Pearson(f, d) |
|
} |
|
|
|
// Quartile returns the three quartile points from a slice of data |
|
func (f Float64Data) Quartile(d Float64Data) (Quartiles, error) { |
|
return Quartile(d) |
|
} |
|
|
|
// InterQuartileRange finds the range between Q1 and Q3 |
|
func (f Float64Data) InterQuartileRange() (float64, error) { |
|
return InterQuartileRange(f) |
|
} |
|
|
|
// Midhinge finds the average of the first and third quartiles |
|
func (f Float64Data) Midhinge(d Float64Data) (float64, error) { |
|
return Midhinge(d) |
|
} |
|
|
|
// Trimean finds the average of the median and the midhinge |
|
func (f Float64Data) Trimean(d Float64Data) (float64, error) { |
|
return Trimean(d) |
|
} |
|
|
|
// Sample returns sample from input with replacement or without |
|
func (f Float64Data) Sample(n int, r bool) ([]float64, error) { |
|
return Sample(f, n, r) |
|
} |
|
|
|
// Variance the amount of variation in the dataset |
|
func (f Float64Data) Variance() (float64, error) { |
|
return Variance(f) |
|
} |
|
|
|
// PopulationVariance finds the amount of variance within a population |
|
func (f Float64Data) PopulationVariance() (float64, error) { |
|
return PopulationVariance(f) |
|
} |
|
|
|
// SampleVariance finds the amount of variance within a sample |
|
func (f Float64Data) SampleVariance() (float64, error) { |
|
return SampleVariance(f) |
|
} |
|
|
|
// Covariance is a measure of how much two sets of data change |
|
func (f Float64Data) Covariance(d Float64Data) (float64, error) { |
|
return Covariance(f, d) |
|
} |
|
|
|
// CovariancePopulation computes covariance for entire population between two variables. |
|
func (f Float64Data) CovariancePopulation(d Float64Data) (float64, error) { |
|
return CovariancePopulation(f, d) |
|
}
|
|
|